Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479867

RESUMO

Advanced mRNA vaccines play vital roles against SARS-CoV-2. However, due to their poor stability, most current mRNA delivery platforms need to be stored at -20{degrees}C or -70{degrees}C, which severely limits their distribution. Herein, we present lyophilized SARS-CoV-2 mRNA-lipid nanoparticle vaccines, which can be stored at room temperature with long-term thermostability. In the in vivo Delta virus challenge experiment, lyophilized Delta variant mRNA vaccine successfully protected mice from infection and cleared the virus. Lyophilized omicron mRNA vaccine enabled to elicit both potent humoral and cellular immunity. In booster immunization experiments in mice and old monkeys, lyophilized omicron mRNA vaccine could effectively increase the titers of neutralizing antibodies against wild-type coronavirus and omicron variants. In humans, lyophilized omicron mRNA vaccine as a booster shot could also engender excellent immunity and had less severe adverse events. This lyophilization platform overcomes the instability of mRNA vaccines without affecting their bioactivity, and significantly improved their accessibility, particularly in remote regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...